0%

LED驱动

GPIO模块一般结构:

a. 有多组GPIO,每组有多个GPIO

b. 使能:电源/时钟

c. 模式(Mode):引脚可用于GPIO或其他功能

d. 方向:引脚Mode设置为GPIO时,可以继续设置它是输出引脚,还是输入引脚

e. 数值:对于输出引脚,可以设置寄存器让它输出高、低电平

​ 对于输入引脚,可以读取寄存器得到引脚的当前电平

LED原理图

image-20211227203745402

image-20211227203833588

LED0对应引脚PI0

相关寄存器

image-20211227203252530

PI0

时钟寄存器

image-20211227205838761

RCC_PLL4CR地址:0x50000000 + 0x894

1
2
3
* enalbe PLL4, it is clock source for all gpio */
*RCC_PLL4CR |= (1<<0);
while ((*RCC_PLL4CR & (1<<1)) == 0);

使能GPIOI

image-20211227210036696

RCC_MP_AHB4ENSETR地址:0x50000000 + 0xA28

1
2
/* enable gpioI */
*RCC_MP_AHB4ENSETR |= (1<<8);

PI0模式设置

image-20211227210347472

GPIOI_MODER地址:0x5000A000 + 0x00

1
2
3
4
5
6
/*
* configure gpI0 as gpio
* configure gpio as output
*/
*GPIOI_MODER &= ~(3<<0);
*GPIOI_MODER |= (1<<0);

输出高低电平

image-20211227210634694

GPIOI_BSRR地址: 0x5000A000 + 0x18

驱动程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <linux/device.h>

static int major;
static struct class *led_class;

/* registers */
// RCC_PLL4CR地址:0x50000000 + 0x894
static volatile unsigned int *RCC_PLL4CR;

// RCC_MP_AHB4ENSETR 地址:0x50000000 + 0xA28
static volatile unsigned int *RCC_MP_AHB4ENSETR;

// GPIOI_MODER 地址:0x5000A000 + 0x00
static volatile unsigned int *GPIOI_MODER;

// GPIOI_BSRR 地址: 0x5000A000 + 0x18
static volatile unsigned int *GPIOI_BSRR;

static ssize_t led_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
char val;
/* copy_from_user : get data from app */
copy_from_user(&val, buf, 1);

/* to set gpio register: out 1/0 */
if (val)
{
/* set gpa10 to let led on */
*GPIOI_BSRR = (1<<16);
}
else
{

/* set gpa10 to let led off */
*GPIOI_BSRR = (1<<0);
}
return 1;
}

static int led_open(struct inode *inode, struct file *filp)
{
/* enalbe PLL4, it is clock source for all gpio */
*RCC_PLL4CR |= (1<<0);
while ((*RCC_PLL4CR & (1<<1)) == 0);

/* enable gpioI */
*RCC_MP_AHB4ENSETR |= (1<<8);

/*
* configure gpI0 as gpio
* configure gpio as output
*/
*GPIOI_MODER &= ~(3<<0);
*GPIOI_MODER |= (1<<0);

return 0;
}

static struct file_operations led_fops = {
.owner = THIS_MODULE,
.write = led_write,
.open = led_open,
};

/* 入口函数 */
static int __init led_init(void)
{
printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);

major = register_chrdev(0, "100ask_led", &led_fops);

/* ioremap(base_phy, size); */
// RCC_PLL4CR地址:0x50000000 + 0x894
RCC_PLL4CR = ioremap(0x50000000 + 0x894, 4);

// RCC_MP_AHB4ENSETR 地址:0x50000000 + 0xA28
RCC_MP_AHB4ENSETR = ioremap(0x50000000 + 0xA28, 4);

// GPIOI_MODER 地址:0x5000A000 + 0x00
GPIOI_MODER = ioremap(0x5000A000 + 0x00, 4);

// GPIOI_BSRR 地址: 0x5000A000 + 0x18
GPIOI_BSRR = ioremap(0x5000A000 + 0x18, 4);

led_class = class_create(THIS_MODULE, "myled");
device_create(led_class, NULL, MKDEV(major, 0), NULL, "myled"); /* /dev/myled */

return 0;
}

static void __exit led_exit(void)
{
iounmap(RCC_PLL4CR);
iounmap(RCC_MP_AHB4ENSETR);
iounmap(GPIOI_MODER);
iounmap(GPIOI_BSRR);

device_destroy(led_class, MKDEV(major, 0));
class_destroy(led_class);

unregister_chrdev(major, "100ask_led");
}

module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");

测试程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>


// ledtest /dev/myled on
// ledtest /dev/myled off

int main(int argc, char **argv)
{
int fd;
char status = 0;

if (argc != 3)
{
printf("Usage: %s <dev> <on|off>\n", argv[0]);
printf(" eg: %s /dev/myled on\n", argv[0]);
printf(" eg: %s /dev/myled off\n", argv[0]);
return -1;
}
// open
fd = open(argv[1], O_RDWR);
if (fd < 0)
{
printf("can not open %s\n", argv[0]);
return -1;
}

// write
if (strcmp(argv[2], "on") == 0)
{
status = 1;
}

write(fd, &status, 1);
return 0;
}

实验

Makefile文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH, 比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH, 比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
# 请参考各开发板的高级用户使用手册

KERN_DIR = /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4

all:
make -C $(KERN_DIR) M=`pwd` modules
$(CROSS_COMPILE)gcc -o ledtest ledtest.c

clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order
rm -f ledtest

obj-m += led_drv.o

ubuntn

1
2
3
4
5
6
7
8
9
10
book@100ask:~/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/02_led_drv/00_led_drv_simple/stm32mp157$ make
make -C /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4 M=`pwd` modules
make[1]: Entering directory '/home/book/100ask_stm32mp157_pro-sdk/Linux-5.4'
CC [M] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/02_led_drv/00_led_drv_simple/stm32mp157/led_drv.o
Building modules, stage 2.
MODPOST 1 modules
LD [M] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/02_led_drv/00_led_drv_simple/stm32mp157/led_drv.ko
make[1]: Leaving directory '/home/book/100ask_stm32mp157_pro-sdk/Linux-5.4'
arm-buildroot-linux-gnueabihf-gcc -o ledtest ledtest.c
book@100ask:~/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/02_led_drv/00_led_drv_simple/stm32mp157$ cp led_drv.ko ledtest /home/book/nfs_rootfs/

开发板

挂载NFS

1
busybox  mount -t nfs -o nolock,vers=3 192.168.5.11:/home/book/nfs_rootfs /mnt

关闭心跳灯

1
echo none > /sys/class/leds/sys-led/trigger

挂载驱动

1
2
3
4
root@ATK-stm32mp1:/mnt# insmod led_drv.ko
[ 2844.864125] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/02_led_drv/00_led_drv_simple/stm32mp157/led_drv.c led_init 81
root@ATK-stm32mp1:/mnt# /mnt/ledtest /dev/myled on #开灯
root@ATK-stm32mp1:/mnt# /mnt/ledtest /dev/myled off #关灯

Hello驱动(不涉及硬件操作)

驱动程序编写步骤:

① 确定主设备号,也可以让内核分配

② 定义自己的file_operations结构体

③ 实现对应的drv_open/drv_read/drv_write等函数,填入file_operations结构体

④ 把file_operations结构体告诉内核:register_chrdev

⑤ 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数

⑥ 有入口函数就应该有出口函数:卸载驱动程序时,出口函数调用unregister_chrdev

⑦ 其他完善:提供设备信息,自动创建设备节点:class_create, device_create

驱动程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include <linux/module.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>

/* 1. 确定主设备号 */
static int major = 0;
static char kernel_buf[1024];
static struct class *hello_class;


#define MIN(a, b) (a < b ? a : b)

/* 3. 实现对应的open/read/write等函数,填入file_operations结构体 */
static ssize_t hello_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
err = copy_to_user(buf, kernel_buf, MIN(1024, size));
return MIN(1024, size);
}

static ssize_t hello_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
int err;
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
err = copy_from_user(kernel_buf, buf, MIN(1024, size));
return MIN(1024, size);
}

static int hello_drv_open (struct inode *node, struct file *file)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}

static int hello_drv_close (struct inode *node, struct file *file)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}

/* 2. 定义自己的file_operations结构体 */
static struct file_operations hello_drv = {
.owner = THIS_MODULE,
.open = hello_drv_open,
.read = hello_drv_read,
.write = hello_drv_write,
.release = hello_drv_close,
};

/* 4. 把file_operations结构体告诉内核:注册驱动程序 */
/* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */
static int __init hello_init(void)
{
int err;

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
major = register_chrdev(0, "hello", &hello_drv); /* /dev/hello */


hello_class = class_create(THIS_MODULE, "hello_class");
err = PTR_ERR(hello_class);
if (IS_ERR(hello_class)) {
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
unregister_chrdev(major, "hello");
return -1;
}

device_create(hello_class, NULL, MKDEV(major, 0), NULL, "hello"); /* /dev/hello */

return 0;
}

/* 6. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数 */
static void __exit hello_exit(void)
{
printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
device_destroy(hello_class, MKDEV(major, 0));
class_destroy(hello_class);
unregister_chrdev(major, "hello");
}


/* 7. 其他完善:提供设备信息,自动创建设备节点 */

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");



阅读一个驱动程序,从它的入口函数开始,第66行就是入口函数。它的主要工作就是第71行,向内核注册一个file_operations结构体:hello_drv,这就是字符设备驱动程序的核心。

file_operations结构体hello_drv在第56行定义,里面提供了open/read/write/release成员,应用程序调用open/read/write/close时就会导致这些成员函数被调用。

file_operations结构体hello_drv中的成员函数都比较简单,大多数只是打印而已。要注意的是,驱动程序和应用程序之间传递数据要使用copy_from_user/copy_to_user函数。

测试程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
* ./hello_drv_test -w abc
* ./hello_drv_test -r
*/
int main(int argc, char **argv)
{
int fd;
char buf[1024];
int len;

/* 1. 判断参数 */
if (argc < 2)
{
printf("Usage: %s -w <string>\n", argv[0]);
printf(" %s -r\n", argv[0]);
return -1;
}

/* 2. 打开文件 */
fd = open("/dev/hello", O_RDWR);
if (fd == -1)
{
printf("can not open file /dev/hello\n");
return -1;
}

/* 3. 写文件或读文件 */
if ((0 == strcmp(argv[1], "-w")) && (argc == 3))
{
len = strlen(argv[2]) + 1;
len = len < 1024 ? len : 1024;
write(fd, argv[2], len);
}
else
{
len = read(fd, buf, 1024);
buf[1023] = '\0';
printf("APP read : %s\n", buf);
}

close(fd);

return 0;
}



编写驱动程序的Makefile

驱动程序中包含了很多头文件,这些头文件来自内核,不同的ARM板它的某些头文件可能不同。所以编译驱动程序时,需要指定板子所用的内核的源码路径。

要编译哪个文件?这也需要指定,设置obj-m变量即可

怎么把.c文件编译为驱动程序.ko?这要借助内核的顶层Makefile。

本驱动程序的Makefile内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH, 比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH, 比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
# 请参考各开发板的高级用户使用手册

KERN_DIR = /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4

all:
make -C $(KERN_DIR) M=`pwd` modules
$(CROSS_COMPILE)gcc -o hello_drv_test hello_drv_test.c

clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order
rm -f hello_drv_test

obj-m += hello_drv.o

上机实验

Ubuntu

make命令编译驱动程序和测试程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
book@100ask:~/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv$ make
make -C /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4 M=`pwd` modules
make[1]: Entering directory '/home/book/100ask_stm32mp157_pro-sdk/Linux-5.4'
CC [M] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.o
Building modules, stage 2.
MODPOST 1 modules
CC [M] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.mod.o
LD [M] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.ko
make[1]: Leaving directory '/home/book/100ask_stm32mp157_pro-sdk/Linux-5.4'
arm-buildroot-linux-gnueabihf-gcc -o hello_drv_test hello_drv_test.c

#拷贝驱动
book@100ask:~/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv$ cp hello_drv.ko hello_drv_test /home/book/nfs_rootfs/

开发板

挂载NFS

1
busybox  mount -t nfs -o nolock,vers=3 192.168.5.11:/home/book/nfs_rootfs /mnt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#安装驱动程序
root@ATK-stm32mp1:/mnt# insmod hello_drv.ko
[ 752.208665] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_init line 70
root@ATK-stm32mp1:/mnt# cat /proc/devices
Character devices:
1 mem
2 pty
3 ttyp
4 /dev/vc/0
4 tty
5 /dev/tty
5 /dev/console
5 /dev/ptmx
5 ttyRPMSG
7 vcs
10 misc
13 input
21 sg
29 fb
81 video4linux
89 i2c
90 mtd
108 ppp
116 alsa
128 ptm
136 pts
153 spi
166 ttyACM
180 usb
188 ttyUSB
189 usb_device
216 rfcomm
226 drm
240 hello
241 media
242 rpmb
243 ttyGS
244 ttyUSI
245 ttySTM
246 bsg
247 watchdog
248 tee
249 iio
250 ptp
251 pps
252 cec
253 rtc
254 gpiochip
root@ATK-stm32mp1:/mnt# lsmod
Module Size Used by
hello_drv 16384 0
stm32_dcmi 32768 0
videobuf2_dma_contig 20480 1 stm32_dcmi
videobuf2_memops 16384 1 videobuf2_dma_contig
videobuf2_v4l2 20480 1 stm32_dcmi
ov5640 28672 0
videobuf2_common 40960 2 stm32_dcmi,videobuf2_v4l2
v4l2_fwnode 20480 2 ov5640,stm32_dcmi
videodev 172032 5 ov5640,v4l2_fwnode,videobuf2_common,stm32_dcmi,videobuf2_v4l2
mc 36864 5 ov5640,videobuf2_common,videodev,stm32_dcmi,videobuf2_v4l2
stm32_cec 16384 0
sch_fq_codel 20480 3
ipv6 442368 40
nf_defrag_ipv6 20480 1 ipv6
root@ATK-stm32mp1:/mnt# ls /dev/hello -l
crw------- 1 root root 240, 0 Feb 7 16:03 /dev/hello

测试程序运行:

1
2
3
4
5
6
7
8
9
10
11
12
root@ATK-stm32mp1:/mnt# ./hello_drv_test
Usage: ./hello_drv_test -w <string>
./hello_drv_test -r
root@ATK-stm32mp1:/mnt# ./hello_drv_test -w aaa
[ 1120.583066] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_open line 45
[ 1120.594824] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_write line 38
[ 1120.610601] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_close line 51
root@ATK-stm32mp1:/mnt# ./hello_drv_test -r
[ 1179.309364] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_open line 45
[ 1179.321087] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_read line 30
APP read[ 1179.334721] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_drv_close line 51
: aaa

卸载驱动:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
root@ATK-stm32mp1:/mnt# rmmod hello_drv
[ 2866.055626] /home/book/01_all_series_quickstart/05_嵌入式Linux驱动开发基础知识/source/01_hello_drv/hello_drv.c hello_exit line 90
root@ATK-stm32mp1:/mnt# lsmod
Module Size Used by
stm32_dcmi 32768 0
videobuf2_dma_contig 20480 1 stm32_dcmi
videobuf2_memops 16384 1 videobuf2_dma_contig
videobuf2_v4l2 20480 1 stm32_dcmi
ov5640 28672 0
videobuf2_common 40960 2 stm32_dcmi,videobuf2_v4l2
v4l2_fwnode 20480 2 ov5640,stm32_dcmi
videodev 172032 5 ov5640,v4l2_fwnode,videobuf2_common,stm32_dcmi,videobuf2_v4l2
mc 36864 5 ov5640,videobuf2_common,videodev,stm32_dcmi,videobuf2_v4l2
stm32_cec 16384 0
sch_fq_codel 20480 3
ipv6 442368 40
nf_defrag_ipv6 20480 1 ipv6

什么是链表,链表是一种通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域(存放指向下一个节点的指针),最后一个节点的指针域指向null(空指针的意思)。

链接的入口节点称为链表的头结点也就是head。

如图所示: 链表1

链表的类型

接下来说一下链表的几种类型:

单链表

刚刚说的就是单链表。

双链表

单链表中的节点只能指向节点的下一个节点。

双链表:每一个节点有两个指针域,一个指向下一个节点,一个指向上一个节点。

双链表 既可以向前查询也可以向后查询。

如图所示: 链表2

循环链表

循环链表,顾名思义,就是链表首尾相连。

循环链表可以用来解决约瑟夫环问题。

链表4

链表的存储方式

了解完链表的类型,再来说一说链表在内存中的存储方式。

数组是在内存中是连续分布的,但是链表在内存中可不是连续分布的。

链表是通过指针域的指针链接在内存中各个节点。

所以链表中的节点在内存中不是连续分布的 ,而是散乱分布在内存中的某地址上,分配机制取决于操作系统的内存管理。

如图所示:

链表3

这个链表起始节点为2, 终止节点为7, 各个节点分布在内存个不同地址空间上,通过指针串联在一起。

链表的定义

接下来说一说链表的定义。

链表节点的定义,很多同学在面试的时候都写不好。

这是因为平时在刷leetcode的时候,链表的节点都默认定义好了,直接用就行了,所以同学们都没有注意到链表的节点是如何定义的。

而在面试的时候,一旦要自己手写链表,就写的错漏百出。

这里我给出C/C++的定义链表节点方式,如下所示:

1
2
3
4
5
6
// 单链表
struct ListNode {
int val; // 节点上存储的元素
ListNode *next; // 指向下一个节点的指针
ListNode(int x) : val(x), next(NULL) {} // 节点的构造函数
};

有同学说了,我不定义构造函数行不行,答案是可以的,C++默认生成一个构造函数。

但是这个构造函数不会初始化任何成员变量,下面我来举两个例子:

通过自己定义构造函数初始化节点:

1
ListNode* head = new ListNode(5);

使用默认构造函数初始化节点:

1
2
ListNode* head = new ListNode();
head->val = 5;

所以如果不定义构造函数使用默认构造函数的话,在初始化的时候就不能直接给变量赋值!

链表的操作

删除节点

删除D节点,如图所示:

链表-删除节点

只要将C节点的next指针 指向E节点就可以了。

那有同学说了,D节点不是依然存留在内存里么?只不过是没有在这个链表里而已。

是这样的,所以在C++里最好是再手动释放这个D节点,释放这块内存。

其他语言例如Java、Python,就有自己的内存回收机制,就不用自己手动释放了。

添加节点

如图所示:

链表-添加节点

可以看出链表的增添和删除都是$O(1)$操作,也不会影响到其他节点。

但是要注意,要是删除第五个节点,需要从头节点查找到第四个节点通过next指针进行删除操作,查找的时间复杂度是$O(n)$。

性能分析

再把链表的特性和数组的特性进行一个对比,如图所示:

链表-链表与数据性能对比

203.移除链表元素

203. 移除链表元素

给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点 。

示例 1:

输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]
示例 2:

输入:head = [], val = 1
输出:[]
示例 3:

输入:head = [7,7,7,7], val = 7
输出:[]

这里以链表 1 4 2 4 来举例,移除元素4。

203_链表删除元素1

如果使用C,C++编程语言的话,不要忘了还要从内存中删除这两个移除的节点, 清理节点内存之后如图:

203_链表删除元素2

当然如果使用java ,python的话就不用手动管理内存了。

还要说明一下,就算使用C++来做leetcode,如果移除一个节点之后,没有手动在内存中删除这个节点,leetcode依然也是可以通过的,只不过,内存使用的空间大一些而已,但建议依然要养成手动清理内存的习惯。

这种情况下的移除操作,就是让节点next指针直接指向下下一个节点就可以了,

那么因为单链表的特殊性,只能指向下一个节点,刚刚删除的是链表的中第二个,和第四个节点,那么如果删除的是头结点又该怎么办呢?

这里就涉及如下链表操作的两种方式:

  • 直接使用原来的链表来进行删除操作。
  • 设置一个虚拟头结点在进行删除操作。

来看第一种操作:直接使用原来的链表来进行移除。

203_链表删除元素3

移除头结点和移除其他节点的操作是不一样的,因为链表的其他节点都是通过前一个节点来移除当前节点,而头结点没有前一个节点。

所以头结点如何移除呢,其实只要将头结点向后移动一位就可以,这样就从链表中移除了一个头结点。

203_链表删除元素4

依然别忘将原头结点从内存中删掉。 203_链表删除元素5

这样移除了一个头结点,是不是发现,在单链表中移除头结点 和 移除其他节点的操作方式是不一样,其实在写代码的时候也会发现,需要单独写一段逻辑来处理移除头结点的情况。

那么可不可以 以一种统一的逻辑来移除 链表的节点呢。

其实可以设置一个虚拟头结点,这样原链表的所有节点就都可以按照统一的方式进行移除了。

来看看如何设置一个虚拟头。依然还是在这个链表中,移除元素1。

203_链表删除元素6

这里来给链表添加一个虚拟头结点为新的头结点,此时要移除这个旧头结点元素1。

这样是不是就可以使用和移除链表其他节点的方式统一了呢?

来看一下,如何移除元素1 呢,还是熟悉的方式,然后从内存中删除元素1。

最后呢在题目中,return 头结点的时候,别忘了 return dummyNode->next;, 这才是新的头结点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
ListNode* removeElements(ListNode* head, int val) {
ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
dummyHead->next = head; // 将虚拟头结点指向head,这样方面后面做删除操作
ListNode* cur = dummyHead;
while (cur->next != NULL) {
if(cur->next->val == val) {
ListNode* tmp = cur->next;
cur->next = cur->next->next;
delete tmp;
} else {
cur = cur->next;
}
}
head = dummyHead->next;
delete dummyHead;
return head;
}
};

707.设计链表

题意:

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。
  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。
  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。
  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

707示例

删除链表节点: 链表-删除节点

添加链表节点: 链表-添加节点

这道题目设计链表的五个接口:

  • 获取链表第index个节点的数值
  • 在链表的最前面插入一个节点
  • 在链表的最后面插入一个节点
  • 在链表第index个节点前面插入一个节点
  • 删除链表的第index个节点

可以说这五个接口,已经覆盖了链表的常见操作,是练习链表操作非常好的一道题目

链表操作的两种方式:

  1. 直接使用原来的链表来进行操作。
  2. 设置一个虚拟头结点在进行操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class MyLinkedList {
public:
// 定义链表节点结构体
struct LinkedNode {
int val;
LinkedNode* next;
LinkedNode(int val):val(val), next(nullptr){}
};

// 初始化链表
MyLinkedList() {
_dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点
_size = 0;
}

// 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点
int get(int index) {
if (index > (_size - 1) || index < 0) {
return -1;
}
LinkedNode* cur = _dummyHead->next;
while(index--){ // 如果--index 就会陷入死循环
cur = cur->next;
}
return cur->val;
}

// 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点
void addAtHead(int val) {
LinkedNode* newNode = new LinkedNode(val);
newNode->next = _dummyHead->next;
_dummyHead->next = newNode;
_size++;
}

// 在链表最后面添加一个节点
void addAtTail(int val) {
LinkedNode* newNode = new LinkedNode(val);
LinkedNode* cur = _dummyHead;
while(cur->next != nullptr){
cur = cur->next;
}
cur->next = newNode;
_size++;
}

// 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
// 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点
// 如果index大于链表的长度,则返回空
void addAtIndex(int index, int val) {
if (index > _size) {
return;
}
LinkedNode* newNode = new LinkedNode(val);
LinkedNode* cur = _dummyHead;
while(index--) {
cur = cur->next;
}
newNode->next = cur->next;
cur->next = newNode;
_size++;
}

// 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的
void deleteAtIndex(int index) {
if (index >= _size || index < 0) {
return;
}
LinkedNode* cur = _dummyHead;
while(index--) {
cur = cur ->next;
}
LinkedNode* tmp = cur->next;
cur->next = cur->next->next;
delete tmp;
_size--;
}

// 打印链表
void printLinkedList() {
LinkedNode* cur = _dummyHead;
while (cur->next != nullptr) {
cout << cur->next->val << " ";
cur = cur->next;
}
cout << endl;
}
private:
int _size;
LinkedNode* _dummyHead;

};

206 反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]
示例 2:

输入:head = [1,2]
输出:[2,1]
示例 3:

输入:head = []
输出:[]

如果再定义一个新的链表,实现链表元素的反转,其实这是对内存空间的浪费。

其实只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表,如图所示:

206_反转链表

之前链表的头节点是元素1, 反转之后头结点就是元素5 ,这里并没有添加或者删除节点,仅仅是改变next指针的方向。

那么接下来看一看是如何反转的呢?

我们拿有示例中的链表来举例,如动画所示:

img

首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。

然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。

为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。

接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。

最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。

双指针

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
ListNode* reverseList(ListNode* head) {
ListNode* cur=head;
ListNode* pre= nullptr;

ListNode* tmp;

while(cur){
tmp=cur->next;
cur->next=pre;
pre=cur;
cur=tmp;
}
return pre;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
struct ListNode* reverseList(struct ListNode* head){
struct ListNode *tmp;
struct ListNode *cur=head;
struct ListNode *pre=NULL;
while(cur){
tmp=cur->next;
cur->next=pre;
pre=cur;
cur=tmp;
}
return pre;

}

递归法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
ListNode* reverse(ListNode* pre,ListNode* cur){
if(cur == NULL) return pre;
ListNode* temp = cur->next;
cur->next = pre;
// 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步
// pre = cur;
// cur = temp;
return reverse(cur,temp);
}
ListNode* reverseList(ListNode* head) {
// 和双指针法初始化是一样的逻辑
// ListNode* cur = head;
// ListNode* pre = NULL;
return reverse(NULL, head);
}

};

24.两两交换链表中的节点

24. 两两交换链表中的节点

给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。

示例 1:

输入:head = [1,2,3,4]
输出:[2,1,4,3]
示例 2:

输入:head = []
输出:[]
示例 3:

输入:head = [1]
输出:[1]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
dummyHead->next = head; // 将虚拟头结点指向head,这样方面后面做删除操作
ListNode* cur = dummyHead;
while(cur->next != nullptr && cur->next->next != nullptr) {
ListNode* tmp = cur->next; // 记录临时节点
ListNode* tmp1 = cur->next->next->next; // 记录临时节点

cur->next = cur->next->next; // 步骤一
cur->next->next = tmp; // 步骤二
cur->next->next->next = tmp1; // 步骤三

cur = cur->next->next; // cur移动两位,准备下一轮交换
}
return dummyHead->next;
}
};
  • 时间复杂度:$O(n)$
  • 空间复杂度:$O(1)$

19.删除链表倒数第N个节点

19. 删除链表的倒数第 N 个结点

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例 1:

输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]
示例 2:

输入:head = [1], n = 1
输出:[]
示例 3:

输入:head = [1,2], n = 1
输出:[1]

双指针

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummyHead = new ListNode(0);
dummyHead->next = head;
ListNode* slow = dummyHead;
ListNode* fast = dummyHead;
while(n-- && fast != NULL) {
fast = fast->next;
}
fast = fast->next; // fast再提前走一步,因为需要让slow指向删除节点的上一个节点
while (fast != NULL) {
fast = fast->next;
slow = slow->next;
}
slow->next = slow->next->next;
return dummyHead->next;
}
};

02.07链表相交

面试题 02.07. 链表相交

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交:

img

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

示例 1:

img

示例 2:

img

示例 3:

imgimg

思路

简单来说,就是求两个链表交点节点的指针。 这里同学们要注意,交点不是数值相等,而是指针相等。

为了方便举例,假设节点元素数值相等,则节点指针相等。

看如下两个链表,目前curA指向链表A的头结点,curB指向链表B的头结点:

面试题02.07.链表相交_1

我们求出两个链表的长度,并求出两个链表长度的差值,然后让curA移动到,和curB 末尾对齐的位置,如图:

面试题02.07.链表相交_2

此时我们就可以比较curA和curB是否相同,如果不相同,同时向后移动curA和curB,如果遇到curA == curB,则找到交点。

否则循环退出返回空指针。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode* curA = headA;
ListNode* curB = headB;
int lenA = 0, lenB = 0;
while (curA != NULL) { // 求链表A的长度
lenA++;
curA = curA->next;
}
while (curB != NULL) { // 求链表B的长度
lenB++;
curB = curB->next;
}
curA = headA;
curB = headB;
// 让curA为最长链表的头,lenA为其长度
if (lenB > lenA) {
swap (lenA, lenB);
swap (curA, curB);
}
// 求长度差
int gap = lenA - lenB;
// 让curA和curB在同一起点上(末尾位置对齐)
while (gap--) {
curA = curA->next;
}
// 遍历curA 和 curB,遇到相同则直接返回
while (curA != NULL) {
if (curA == curB) {
return curA;
}
curA = curA->next;
curB = curB->next;
}
return NULL;
}
};

142.环形链表

142. 环形链表 II

题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。

说明:不允许修改给定的链表。

循环链表

这道题目,不仅考察对链表的操作,而且还需要一些数学运算。

主要考察两知识点:

  • 判断链表是否环
  • 如果有环,如何找到这个环的入口

#判断链表是否有环

可以使用快慢指针法,分别定义 fast 和 slow 指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。

为什么fast 走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢

首先第一点:fast指针一定先进入环中,如果fast指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。

那么来看一下,为什么fast指针和slow指针一定会相遇呢?

可以画一个环,然后让 fast指针在任意一个节点开始追赶slow指针。

会发现最终都是这种情况, 如下图:

142环形链表1

fast和slow各自再走一步, fast和slow就相遇了

这是因为fast是走两步,slow是走一步,其实相对于slow来说,fast是一个节点一个节点的靠近slow的,所以fast一定可以和slow重合。

动画如下:

141.环形链表

#如果有环,如何找到这个环的入口

此时已经可以判断链表是否有环了,那么接下来要找这个环的入口了。

假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:

142环形链表2

那么相遇时: slow指针走过的节点数为: x + y, fast指针走过的节点数:x + y + n (y + z),n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。

因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:

1
(x + y) * 2 = x + y + n (y + z)

两边消掉一个(x+y): x + y = n (y + z)

因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。

所以要求x ,将x单独放在左面:x = n (y + z) - y ,

再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z 注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。

这个公式说明什么呢?

先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。

当 n为1的时候,公式就化解为 x = z

这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点

也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。

让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。

动画如下:

142.环形链表II(求入口)

那么 n如果大于1是什么情况呢,就是fast指针在环形转n圈之后才遇到 slow指针。

其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* fast = head;
ListNode* slow = head;
while(fast != NULL && fast->next != NULL) {
slow = slow->next;
fast = fast->next->next;
// 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇
if (slow == fast) {
ListNode* index1 = fast;
ListNode* index2 = head;
while (index1 != index2) {
index1 = index1->next;
index2 = index2->next;
}
return index2; // 返回环的入口
}
}
return NULL;
}
};

1.二分查找

704.二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

1
2
3
输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

1
2
3
输入: nums = [-1,0,3,5,9,12], target = 2     
输出: -1
解释: 2 不存在 nums 中因此返回 -1

思路

这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。

二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

下面我用这两种区间的定义分别讲解两种不同的二分写法。

二分法第一种写法

第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)

区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

例如在数组:1,2,3,4,7,9,10中查找元素2,如图所示:

704.二分查找

代码如下:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 版本一
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
int search(int* nums, int numsSize, int target){
int pivot,left=0,right=numsSize-1;
while (left <=right)
{
pivot = left + (right-left)/2;
if(nums[pivot]==target) return pivot;
if(nums[pivot]>target)
right=pivot-1;
else
left=pivot+1;
}
return -1;
}

二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别

704.二分查找1

代码如下:(详细注释)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 版本二
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};

相关题目

35. 搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

你可以假设数组中无重复元素。

示例 1:

  • 输入: [1,3,5,6], 5
  • 输出: 2

示例 2:

  • 输入: [1,3,5,6], 2
  • 输出: 1

示例 3:

  • 输入: [1,3,5,6], 7
  • 输出: 4

示例 4:

  • 输入: [1,3,5,6], 0
  • 输出: 0

暴力解法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
for (int i = 0; i < nums.size(); i++) {
// 分别处理如下三种情况
// 目标值在数组所有元素之前
// 目标值等于数组中某一个元素
// 目标值插入数组中的位置
if (nums[i] >= target) { // 一旦发现大于或者等于target的num[i],那么i就是我们要的结果
return i;
}
}
// 目标值在数组所有元素之后的情况
return nums.size(); // 如果target是最大的,或者 nums为空,则返回nums的长度
}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

二分法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int left=0;
int right=nums.size()-1;
while(left<=right){
int middle = left + ((right-left)/2);
if(nums[middle]<target)
left=middle + 1;
else if(nums[middle]>target)
right=middle-1;
else
return middle;
}
//目标值不在数组中
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0, -1]
// 目标值等于数组中某一个元素 return middle;
// 目标值插入数组中的位置 [left, right],return right + 1
// 目标值在数组所有元素之后的情况 [left, right], return right + 1
return right+1;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n; // 定义target在左闭右开的区间里,[left, right) target
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在 [middle+1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值的情况,直接返回下标
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0,0)
// 目标值等于数组中某一个元素 return middle
// 目标值插入数组中的位置 [left, right) ,return right 即可
// 目标值在数组所有元素之后的情况 [left, right),return right 即可
return right;
}
};
  • 时间复杂度:O(logn)
  • 时间复杂度:O(1)

34. 在排序数组中查找元素的第一个和最后一个位置*

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

进阶:你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

示例 1:

  • 输入:nums = [5,7,7,8,8,10], target = 8
  • 输出:[3,4]

示例 2:

  • 输入:nums = [5,7,7,8,8,10], target = 6
  • 输出:[-1,-1]

示例 3:

  • 输入:nums = [], target = 0
  • 输出:[-1,-1]

下面我来把所有情况都讨论一下。

寻找target在数组里的左右边界,有如下三种情况:

  • 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
  • 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
  • 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/ 二分查找,寻找target的右边界(不包括target)
// 如果rightBorder为没有被赋值(即target在数组范围的左边,例如数组[3,3],target为2),为了处理情况一
int getRightBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else { // 当nums[middle] == target的时候,更新left,这样才能得到target的右边界
left = middle + 1;
rightBorder = left;
}
}
return rightBorder;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 二分查找,寻找target的左边界leftBorder(不包括target)
// 如果leftBorder没有被赋值(即target在数组范围的右边,例如数组[3,3],target为4),为了处理情况一
int getLeftBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] >= target) { // 寻找左边界,就要在nums[middle] == target的时候更新right
right = middle - 1;
leftBorder = right;
} else {
left = middle + 1;
}
}
return leftBorder;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int leftBorder = getLeftBorder(nums, target);
int rightBorder = getRightBorder(nums, target);
// 情况一
if (leftBorder == -2 || rightBorder == -2) return {-1, -1};
// 情况三
if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};
// 情况二
return {-1, -1};
}
private:
int getRightBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] > target) {
right = middle - 1;
} else { // 寻找右边界,nums[middle] == target的时候更新left
left = middle + 1;
rightBorder = left;
}
}
return rightBorder;
}
int getLeftBorder(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
while (left <= right) {
int middle = left + ((right - left) / 2);
if (nums[middle] >= target) { // 寻找左边界,nums[middle] == target的时候更新right
right = middle - 1;
leftBorder = right;
} else {
left = middle + 1;
}
}
return leftBorder;
}
};

2.移除元素

27. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 $O(1)$ 额外空间并原地修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。

示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。

你不需要考虑数组中超出新长度后面的元素。

暴力解法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int size=nums.size();
for(int i=0;i<size;i++){
if(nums[i]==val){
for (int j = i + 1; j < size; j++) {
nums[j - 1] = nums[j];
}
i--;
size--;
}
}

return size;
}
};
  • 时间复杂度:$O(n^2)$
  • 空间复杂度:$O(1)$

双指针法

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

删除过程如下:

27.移除元素-双指针法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};

3.长度最小的子数组

209. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:

输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

暴力解法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};

滑动窗口

接下来就开始介绍数组操作中另一个重要的方法:滑动窗口

所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果

这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:

209.长度最小的子数组

最后找到 4,3 是最短距离。

其实从动画中可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。

在本题中实现滑动窗口,主要确定如下三点:

  • 窗口内是什么?
  • 如何移动窗口的起始位置?
  • 如何移动窗口的结束位置?

窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。

窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。

窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,窗口的起始位置设置为数组的起始位置就可以了。

解题的关键在于 窗口的起始位置如何移动,如图所示:

leetcode_209

可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将$O(n^2)$的暴力解法降为$O(n)$。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};

时间复杂度:$O(n)$
空间复杂度:$O(1)$

4.螺旋矩阵

59. 螺旋矩阵 II

给你一个正整数 n ,生成一个包含 1n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix

示例 1:

img

1
2
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:

1
2
输入:n = 1
输出:[[1]]

这道题目可以说在面试中出现频率较高的题目,本题并不涉及到什么算法,就是模拟过程,但却十分考察对代码的掌控能力。

要如何画出这个螺旋排列的正方形矩阵呢?

相信很多同学刚开始做这种题目的时候,上来就是一波判断猛如虎。

结果运行的时候各种问题,然后开始各种修修补补,最后发现改了这里哪里有问题,改了那里这里又跑不起来了。

大家还记得我们在这篇文章数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)中讲解了二分法,提到如果要写出正确的二分法一定要坚持循环不变量原则

而求解本题依然是要坚持循环不变量原则。

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

由外向内一圈一圈这么画下去。

可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是一进循环深似海,从此offer是路人

这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开又闭的原则,这样这一圈才能按照统一的规则画下来。

那么我按照左闭右开的原则,来画一圈,大家看一下:

螺旋矩阵

这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。

这也是坚持了每条边左闭右开的原则。

一些同学做这道题目之所以一直写不好,代码越写越乱。

就是因为在画每一条边的时候,一会左开又闭,一会左闭右闭,一会又来左闭右开,岂能不乱。

代码如下,已经详细注释了每一步的目的,可以看出while循环里判断的情况是很多的,代码里处理的原则也是统一的左闭右开。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 每一圈循环,需要控制每一条边遍历的长度
int i,j;
while (loop --) {
i = startx;
j = starty;

// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < starty + n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < startx + n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}

// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;

// offset 控制每一圈里每一条边遍历的长度
offset += 2;
}

// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};

IIC

image-20211116160606799

  • 开始标志(S)发出后,主设备会传送一个7 位的Slave 地址,并且后面跟着一个第8位,称为Read/Write 位。
  • R/W 位表示主设备是在接受从设备的数据还是在向其写数据。
  • 然后,主设备释放SDA 线,等待从设备的应答信号(ACK)。每个字节的传输都要跟随有一个应答位。
  • 应答产生时,从设备将SDA 线拉低并且在SCL 为高电平时保持低。
  • 数据传输以停止标志(P)结束,然后释放总线。但主设备也可以产生重复的开始信号去操作另一台从设备,而不发出结束标志。
  • 所有的SDA 信号变化都要在SCL 时钟为低电平时进行,除了开始和结束标志

SPI

image-20211116160800211

4线SPI器件有四个信号:

  • 时钟(SPI CLK, SCLK)
  • 片选(CS)
  • 主机输出、从机输入(MOSI)
  • 主机输入、从机输出(MISO)

image-20211116161638168

时钟极性和时钟相位
  在SPI中,主机可以选择时钟极性和时钟相位。在空闲状态期间,CPOL位设置时钟信号的极性。空闲状态是指传输开始时CS为高电平且在向低电平转变的期间,以及传输结束时CS为低电平且在向高电平转变的期间。CPHA位选择时钟相位。根据CPHA位的状态,使用时钟上升沿或下降沿来采样和/或移位数据。主机必须根据从机的要求选择时钟极性和时钟相位。根据CPOL和CPHA位的选择,有四种SPI模式可用。表1显示了这4种SPI模式

uart协议

image-20211116172439251

其中各位的意义如下:

空闲位:

  UART协议规定,当总线处于空闲状态时信号线的状态为‘1’即高电平,表示当前线路上没有数据传输。

起始位:

  每开始一次通信时发送方先发出一个逻辑”0”的信号(低电平),表示传输字符的开始。因为总线空闲时为高电平所以开始一次通信时先发送一个明显区别于空闲状态的信号即低电平。

数据位:

  起始位之后就是我们所要传输的数据,数据位可以是5、6、7、8,9位等,构成一个字符(一般都是8位)。如ASCII码(7位),扩展BCD码(8位)。先发送最低位,最后发送最高位,使用低电平表示‘0’高电平表示‘1’完成数据位的传输。

奇偶校验位:

  数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验数据传送的正确性。校验位其实是调整个数,串口校验分几种方式:

  • 1、无校验(no parity)。
  • 2、奇校验(odd parity):如果数据位中“1”的数目是偶数,则校验位为“1”,如果“1”的数目是奇数,校验位为“0”。
  • 3、偶校验(even parity):如果数据为中“1”的数目是偶数,则校验位为“0”,如果为奇数,校验位为“1”。
  • 4、mark parity:校验位始终为1(不常用)。
  • 5、parity:校验位始终为0(不常用)。

停止位:

  它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。 由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备之间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟的机会。停止位个数越多,数据传输越稳定,但是数据传输速度也越慢。

波特率

数据传输速率使用波特率来表示。单位bps(bits per second),常见的波特率9600bps、115200bps等等,其他标准的波特率是1200,2400,4800,19200,38400,57600。举个例子,如果串口波特率设置为9600bps,那么传输一个比特需要的时间是1/9600≈104.2us。

img

以9600,8-N-1(9600波特率,8个数据位,没有校验位,1位停止位)为例,这是目前最常用的串口配置,现在我们传输“O”“K”两个ASCII值,“O”的ASCII为79,对应的二进制数据为01001111,“K”对应的二进制数据为01001011,传输的格式数据如下图所示:

img

串口波特率为9600,1bit传输时间大约为104us,传送一个数据实际是10个比特(开始位-8个数据位-停止位),一个bytes传输速率实际为9600*8/10=7680bps。

线程的概念

所谓线程,就是操作系统所能调度的最小单位。普通的进程,只有一个线程在执行对应的逻辑。我们可以通过多线程编程,使一个进程可以去执行多个不同的任务。相比多进程编程而言,线程享有共享资源,即在进程中出现的全局变量,每个线程都可以去访问它,与进程共享“4G”内存空间,使得系统资源消耗减少。本章节来讨论Linux下POSIX线程

多线程编程

1.线程的标识pthread_t

对于进程而言,每一个进程都有一个唯一对应的PID号来表示该进程,而对于线程而言,也有一个“类似于进程的PID号”,名为tid,其本质是一个pthread_t类型的变量。线程号与进程号是表示线程和进程的唯一标识,但是对于线程号而言,其仅仅在其所属的进程上下文中才有意义。

1
2
3
4
获取线程号
#include <pthread.h>
pthread_t pthread_self(void);
成功:返回线程号

运行结果

1
2
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text1
tid = 139663657288896

2.线程的创建pthread_create

1
2
3
创建线程
#include <pthread.h>
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine) (void *), void *arg);

该函数第一个参数为pthread_t指针,用来保存新建线程的线程号;

第二个参数表示了线程的属性,一般传入NULL表示默认属性;

第三个参数是一个函数指针,就是线程执行的函数。这个函数返回值为void*,形参为void*。

第四个参数则表示为向线程处理函数传入的参数,若不传入,可用NULL填充

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun(void *arg)
{
printf("pthread_New = %lu\n",(unsigned long)pthread_self());
}

int main()
{

pthread_t tid1;
int ret = pthread_create(&tid1,NULL,fun,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}

/*tid_main 为通过pthread_self获取的线程ID,tid_new通过执行pthread_create成功后tid指向的空间*/
printf("tid_main = %lu tid_new = %lu \n",(unsigned long)pthread_self(),(unsigned long)tid1);

/*因线程执行顺序随机,不加sleep可能导致猪线程先执行,导致进程结束,无法执行到子线程*/
sleep(1);

return 0;
}

运行结果:

注意:因采用POSIX线程接口,故在要编译的时候包含pthread库,使用gcc编译应gcc xxx.c -lpthread 方可编译多线程程序

1
2
3
4
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ gcc -o Pthread_Text2 Pthread_Text2.c -lpthread
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text2
tid_main = 139840005445440 tid_new = 139839996954368
pthread_New = 139839996954368

通过pthread_create确实可以创建出来线程,主线程中执行pthread_create后的tid指向了线程号空间,与子线程通过函数pthread_self打印出来的线程号一致。

特别说明的是,当主线程伴随进程结束时,所创建出来的线程也会立即结束,不会继续执行。并且创建出来的线程的执行顺序是随机竞争的,并不能保证哪一个线程会先运行。可以将上述代码中sleep函数进行注释,观察实验现象。

3.向线程传入参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun1(void *arg)
{
printf("%s:arg = %d Addr = %p\n",__FUNCTION__,*(int *)arg,arg);
}

void *fun2(void *arg)
{
printf("%s:arg = %d Addr = %p\n",__FUNCTION__,(int)(long)arg,arg);
}

int main()
{

pthread_t tid1,tid2;
int a = 50;
int ret = pthread_create(&tid1,NULL,fun1,(void *)&a);//传递地址
if(ret != 0){
perror("pthread_create");
return -1;
}
ret = pthread_create(&tid2,NULL,fun2,(void *)(long)a);//传递值
if(ret != 0){
perror("pthread_create");
return -1;
}
sleep(1);
printf("%s:a = %d Add = %p \n",__FUNCTION__,a,&a);
return 0;
}

运行结果:

1
2
3
4
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text3
fun1:arg = 50 Addr = 0x7fff31ab7230
fun2:arg = 50 Addr = 0x32
main:a = 50 Add = 0x7fff31ab7230

4.线程的退出与回收

线程的退出有三种情况

  • 进程结束

  • 函数pthread_exit来主动退出

  • 其它线程调用pthread_cancel

    当线程结束后,主线程可以通过函数pthread_join/pthread_tryjoin_np来回收线程的资源,并且获得线程结束后需要返回的数据。

1
2
3
线程主动退出
#include <pthread.h>
void pthread_exit(void *retval);

pthread_exit函数为线程退出函数,在退出时候可以传递一个void*类型的数据带给主线程,若选择不传出数据,可将参数填充为NULL。

1
2
3
4
线程被动退出,其他线程使用该函数让另一个线程退出
#include <pthread.h>
int pthread_cancel(pthread_t thread);
成功:返回0

该函数传入一个tid号,会强制退出该tid所指向的线程,若成功执行会返回0。

1
2
3
线程资源回收(阻塞)
#include <pthread.h>
int pthread_join(pthread_t thread, void **retval);

该函数为线程回收函数,默认状态为阻塞状态,直到成功回收线程后才返回。第一个参数为要回收线程的tid号,第二个参数为线程回收后接受线程传出的数据。

1
2
3
4
线程资源回收(非阻塞)
#define _GNU_SOURCE
#include <pthread.h>
int pthread_tryjoin_np(pthread_t thread, void **retval);

该函数为非阻塞模式回收函数,通过返回值判断是否回收掉线程,成功回收则返回0,其余参数与pthread_join一致。

例程1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun1(void *arg)
{
static int tmp = 0;//必须要static修饰,否则pthread_join无法获取到正确值
//int tmp = 0;
tmp = *(int *)arg;
tmp+=100;
printf("%s:Addr = %p tmp = %d\n",__FUNCTION__,&tmp,tmp);
pthread_exit((void *)&tmp); //线程主动退出
}


int main()
{

pthread_t tid1;
int a = 50;
void *Tmp = NULL;
int ret = pthread_create(&tid1,NULL,fun1,(void *)&a); //创建进程并传入参数a=50
if(ret != 0){
perror("pthread_create");
return -1;
}
pthread_join(tid1,&Tmp);
printf("%s:Addr = %p Val = %d\n",__FUNCTION__,Tmp,*(int *)Tmp);
return 0;
}

运行结果:

1
2
3
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text6
fun1:Addr = 0x562fad4d2014 tmp = 150
main:Addr = 0x562fad4d2014 Val = 150

例程2:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun(void *arg)
{
printf("Pthread:%d Come !\n",(int )(long)arg+1);
pthread_exit(arg);
}


int main()
{
int ret,i,flag = 0;
void *Tmp = NULL;
pthread_t tid[3];
for(i = 0;i < 3;i++){ //创建3个进程
ret = pthread_create(&tid[i],NULL,fun,(void *)(long)i);
if(ret != 0){
perror("pthread_create");
return -1;
}
}
while(1){
for(i = 0;i <3;i++){
if(pthread_tryjoin_np(tid[i],&Tmp) == 0){ //非阻塞回收线程
printf("Pthread : %d exit !\n",(int )(long )Tmp+1);
flag++;
}
}
if(flag >= 3) break;
}
return 0;
}

运行结果:

1
2
3
4
5
6
7
8
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text7
Pthread:1 Come !
Pthread:2 Come !
Pthread:3 Come !
Pthread : 1 exit !
Pthread : 2 exit !
Pthread : 3 exit !

例程3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun1(void *arg)
{
printf("Pthread:1 come!\n");
while(1){
sleep(1);
}
}

void *fun2(void *arg)
{
printf("Pthread:2 come!\n");
pthread_cancel((pthread_t )(long)arg);
pthread_exit(NULL);
}

int main()
{
int ret,i,flag = 0;
void *Tmp = NULL;
pthread_t tid[2];
ret = pthread_create(&tid[0],NULL,fun1,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}
sleep(1);
ret = pthread_create(&tid[1],NULL,fun2,(void *)tid[0]);
if(ret != 0){
perror("pthread_create");
return -1;
}
sleep(1); //
while(1){
for(i = 0;i <2;i++){
if(pthread_tryjoin_np(tid[i],NULL) == 0){
printf("Pthread : %d exit !\n",i+1);
flag++;
}
}
if(flag >= 2) break;
}
return 0;
}

运行结果:

1
2
3
4
5
6
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text8
Pthread:1 come!
Pthread:2 come!
Pthread : 1 exit !
Pthread : 2 exit !

例程4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>


int Num = 0;

void *fun1(void *arg)
{
while(Num < 3){
Num++;
printf("%s:Num = %d\n",__FUNCTION__,Num);
sleep(1);
}
pthread_exit(NULL);
}

void *fun2(void *arg)
{
while(Num > -3){
Num--;
printf("%s:Num = %d\n",__FUNCTION__,Num);
sleep(1);
}
pthread_exit(NULL);
}

int main()
{
int ret;
pthread_t tid1,tid2;
ret = pthread_create(&tid1,NULL,fun1,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}
ret = pthread_create(&tid2,NULL,fun2,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}
pthread_join(tid1,NULL); //阻塞回收
pthread_join(tid2,NULL);
return 0;
}

运行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text9
fun1:Num = 1
fun2:Num = 0
fun1:Num = 1
fun2:Num = 0
fun1:Num = 1
fun2:Num = 0
fun1:Num = 1
fun2:Num = 0
fun1:Num = 1
fun2:Num = 0
fun1:Num = 1
fun2:Num = 0
死循环

为了解决上述对临界资源的竞争问题,pthread线程引出了互斥锁来解决临界资源访问。通过对临界资源加锁来保护资源只被单个线程操作,待操作结束后解锁,其余线程才可获得操作权。

5.互斥锁

当线程在运行过程中,去操作公共资源,如全局变量的时候,可能会发生彼此“矛盾”现象。例如线程1企图想让变量自增,而线程2企图想要变量自减,两个线程存在互相竞争的关系导致变量永远处于一个“平衡状态”,两个线程互相竞争,线程1得到执行权后将变量自加,当线程2得到执行权后将变量自减,变量似乎永远在某个范围内浮动,无法到达期望数值。

初始化互斥量函数

1
2
3
初始化互斥量
#include <pthread.h>
int pthread_mutex_init(phtread_mutex_t *mutex, const pthread_mutexattr_t *restrict attr);

该函数初始化一个互斥量,第一个参数是改互斥量指针,第二个参数为控制互斥量的属性,一般为NULL。当函数成功后会返回0,代表初始化互斥量成功。

当然初始化互斥量也可以调用宏来快速初始化,代码如下:

1
pthread_mutex_t mutex = PTHREAD_MUTEX_INITALIZER; 

互斥量加锁/解锁

1
2
3
4
5
互斥量加锁(阻塞)/解锁 
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
成功:返回0

lock函数与unlock函数分别为加锁解锁函数,只需要传入已经初始化好的pthread_mutex_t互斥量指针。成功后会返回0。

当某一个线程获得了执行权后,执行lock函数,一旦加锁成功后,其余线程遇到lock函数时候会发生阻塞,直至获取资源的线程执行unlock函数后。unlock函数会唤醒其他正在等待互斥量的线程。

特别注意的是,当获取lock之后,必须在逻辑处理结束后执行unlock,否则会发生死锁现象!导致其余线程一直处于阻塞状态,无法执行下去。在使用互斥量的时候,尤其要注意使用pthread_cancel函数,防止发生死锁现象!

1
2
3
互斥量加锁(非阻塞)
#include <pthread.h>
int pthread_mutex_trylock(pthread_mutex_t *mutex);

该函数同样也是一个线程加锁函数,但该函数是非阻塞模式通过返回值来判断是否加锁成功,用法与上述阻塞加锁函数一致。

互斥量销毁

1
2
3
4
互斥量销毁
#include <pthread.h>
int pthread_mutex_destory(pthread_mutex_t *mutex);
成功:返回0

该函数是用于销毁互斥量的,传入互斥量的指针,就可以完成互斥量的销毁,成功返回0。

例程1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

pthread_mutex_t mutex;

int Num = 0;

void *fun1(void *arg)
{
pthread_mutex_lock(&mutex);
while(Num < 3){
Num++;
printf("%s:Num = %d\n",__FUNCTION__,Num);
sleep(1);
}
pthread_mutex_unlock(&mutex);
pthread_exit(NULL);
}

void *fun2(void *arg)
{
pthread_mutex_lock(&mutex);
while(Num > -3){
Num--;
printf("%s:Num = %d\n",__FUNCTION__,Num);
sleep(1);
}
pthread_mutex_unlock(&mutex);
pthread_exit(NULL);
}

int main()
{
int ret;
pthread_t tid1,tid2;
ret = pthread_mutex_init(&mutex,NULL);//初始化互斥锁
if(ret != 0){
perror("pthread_mutex_init");
return -1;
}
ret = pthread_create(&tid1,NULL,fun1,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}
ret = pthread_create(&tid2,NULL,fun2,NULL);
if(ret != 0){
perror("pthread_create");
return -1;
}
pthread_join(tid1,NULL);
pthread_join(tid2,NULL);
pthread_mutex_destroy(&mutex);
return 0;
}

运行结果:

1
2
3
4
5
6
7
8
9
10
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/01_文档配套源码$ ./Pthread_Text10
fun1:Num = 1
fun1:Num = 2
fun1:Num = 3
fun2:Num = 2
fun2:Num = 1
fun2:Num = 0
fun2:Num = -1
fun2:Num = -2
fun2:Num = -3

6.信号量

注意:信号量跟互斥量不一样,互斥量用来防止多个线程同时访问某个临界资源。信号量起通知作用,线程A在等待某件事,线程B完成了这件事后就可以给线程A发信号。

1
2
3
初始化信号量
#include <semaphore.h>
int sem_init(sem_t *sem,int pshared,unsigned int value);

该函数可以初始化一个信号量,第一个参数传入sem_t类型指针;

第二个参数传入0代表线程控制,否则为进程控制

第三个参数表示信号量的初始值,0代表阻塞,1代表运行

待初始化结束信号量后,若执行成功会返回0。

1
2
3
4
5
信号量PV操作(阻塞)
#include <pthread.h>
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
成功:返回0

sem_wait函数作用为检测指定信号量是否有资源可用,若无资源可用会阻塞等待,若有资源可用会自动的执行“sem-1”的操作。所谓的“sem-1”是与上述初始化函数中第三个参数值一致,成功执行会返回0。

sem_post函数会释放指定信号量的资源,执行“sem+1”操作。

通过以上2个函数可以完成所谓的PV操作,即信号量的申请与释放,完成对线程执行顺序的控制。

1
2
3
4
信号量申请资源(非阻塞)
#include <pthread.h>
int sem_trywait(sem_t *sem);
成功:返回0

此函数是信号量申请资源的非阻塞函数,功能与sem_wait一致,唯一区别在于此函数为非阻塞。

1
2
3
4
信号量销毁
#include <pthread.h>
int sem_destory(sem_t *sem);
成功:返回0

该函数为信号量销毁函数,执行过后可将信号量进行销毁。

测试例程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <semaphore.h>

sem_t sem1,sem2,sem3;//申请的三个信号量变量

void *fun1(void *arg)
{
sem_wait(&sem1);//因sem1本身有资源,所以不被阻塞 获取后sem1-1 下次会会阻塞
printf("%s:Pthread Come!\n",__FUNCTION__);
sem_post(&sem2);// 使得sem2获取到资源,sem2+1
pthread_exit(NULL);
}

void *fun2(void *arg)
{
sem_wait(&sem2);//因sem2在初始化时无资源会被阻塞,直至14行代码执行 不被阻塞 sem2-1 下次会阻塞
printf("%s:Pthread Come!\n",__FUNCTION__);
sem_post(&sem3);// 使得sem3获取到资源,sem3+1
pthread_exit(NULL);
}

void *fun3(void *arg)
{
sem_wait(&sem3);//因sem3在初始化时无资源会被阻塞,直至22行代码执行 不被阻塞 sem3-1 下次会阻塞
printf("%s:Pthread Come!\n",__FUNCTION__);
sem_post(&sem1);// 使得sem1获取到资源,sem+1
pthread_exit(NULL);
}

int main()
{
int ret;
pthread_t tid1,tid2,tid3;
ret = sem_init(&sem1,0,1); //初始化信号量1 并且赋予其资源
if(ret < 0){
perror("sem_init");
return -1;
}
ret = sem_init(&sem2,0,0); //初始化信号量2 让其阻塞
if(ret < 0){
perror("sem_init");
return -1;
}
ret = sem_init(&sem3,0,0); //初始化信号3 让其阻塞
if(ret < 0){
perror("sem_init");
return -1;
}
ret = pthread_create(&tid1,NULL,fun1,NULL);//创建线程1
if(ret != 0){
perror("pthread_create");
return -1;
}
ret = pthread_create(&tid2,NULL,fun2,NULL);//创建线程2
if(ret != 0){
perror("pthread_create");
return -1;
}
ret = pthread_create(&tid3,NULL,fun3,NULL);//创建线程3
if(ret != 0){
perror("pthread_create");
return -1;
}
/*回收线程资源*/
pthread_join(tid1,NULL);
pthread_join(tid2,NULL);
pthread_join(tid3,NULL);

/*销毁信号量*/
sem_destroy(&sem1);
sem_destroy(&sem2);
sem_destroy(&sem3);

return 0;
}

7.条件变量

条件变量时一种同步机制,用来通知其他线程条件满足了。一般是用来通知对方共享数据的状态信息,因此条件变量时结合互斥量来使用的。

1
2
3
4
5
6
7
8
9
10
11
12
13
#include <pthread.h>
// 初始化条件变量
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);//cond_attr通常为NULL

// 销毁条件变量
int pthread_cond_destroy(pthread_cond_t *cond);

这些函数成功时都返回0


//等待条件变量
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
1
2
3
4
5
pthread_mutex_lock(&g_tMutex);
pthread_cond_wait(&g_tConVar, &g_tMutex); // 如果条件不满足则,会unlock g_tMutex
// 条件满足后被唤醒,会lock g_tMutex
/* 操作临界资源 */
pthread_mutex_unlock(&g_tMutex);

通知条件变量

1
2

int pthread_cond_signal(pthread_cond_t *cond);

例程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>

static char g_buf[1000];
static pthread_mutex_t g_tMutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t g_tConVar = PTHREAD_COND_INITIALIZER;

static void *my_thread_func (void *data)
{
while (1)
{
//sleep(1);
/* 等待通知 */
//while (g_hasData == 0);
pthread_mutex_lock(&g_tMutex);
pthread_cond_wait(&g_tConVar, &g_tMutex);

/* 打印 */
printf("recv: %s\n", g_buf);
pthread_mutex_unlock(&g_tMutex);
}

return NULL;
}


int main(int argc, char **argv)
{
pthread_t tid;
int ret;
char buf[1000];

/* 1. 创建"接收线程" */
ret = pthread_create(&tid, NULL, my_thread_func, NULL);
if (ret)
{
printf("pthread_create err!\n");
return -1;
}


/* 2. 主线程读取标准输入, 发给"接收线程" */
while (1)
{
fgets(buf, 1000, stdin);
pthread_mutex_lock(&g_tMutex);
memcpy(g_buf, buf, 1000);
pthread_cond_signal(&g_tConVar); /* 通知接收线程 */
pthread_mutex_unlock(&g_tMutex);
}
return 0;
}


运行结果:

1
2
3
4
5
6
7
8
9
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/13_thread/02_视频配套源码$ ./pthread5
ssdd
recv: ssdd

dddd
recv: dddd

ffffg
recv: ffffg

总结

互斥锁:

当多个线程出现后,会遇到同时操作临界公共资源的问题,当线程操作公共资源时需要对线程进行保护加锁,防止其与线程在此线程更改变量时同时更改变量,待逻辑执行完毕后再次解锁,使其余线程再度开始竞争。互斥锁创建流程下图所示。

image-20211215215429224

信号量

当多个线程出现后,同时会遇到无序执行的问题。有时候需要对线程的执行顺序做出限定,变引入了信号量,通过PV操作来控制线程的执行顺序,如下图所示。

image-20211219104030329

条件变量

多线程面试相关

1.多线程有什么用?

1)发挥多核CPU 的优势

随着工业的进步,现在的笔记本、台式机乃至商用的应用服务器至少也都是双核的,4 核、8 核甚至 16 核的也都不少见,如果是单线程的程序,那么在双核 CPU 上 就浪费了 50%, 在 4 核 CPU 上就浪费了 75%。单核 CPU 上所谓的”多线程”那是假的多线程,同一时间处理器只会处理一段逻辑,只不过线程之间切换得比较快, 看着像多个线程”同时”运行罢了。多核 CPU 上的多线程才是真正的多线程,它能让你的多段逻辑同时工作,多线程,可以真正发挥出多核CPU 的优势来,达到充分利用CPU 的目的。

2)防止阻塞

从程序运行效率的角度来看,单核 CPU 不但不会发挥出多线程的优势,反而会因为在单核CPU 上运行多线程导致线程上下文的切换,而降低程序整体的效率。但

是单核 CPU 我们还是要应用多线程,就是为了防止阻塞。试想,如果单核 CPU 使用单线程,那么只要这个线程阻塞了,比方说远程读取某个数据吧,对端迟迟未返回又没有设置超时时间,那么你的整个程序在数据返回回来之前就停止运行了。多线程可以防止这个问题,多条线程同时运行,哪怕一条线程的代码执行读取数据阻塞,也不会影响其它任务的执行。

3)便于建模

这是另外一个没有这么明显的优点了。假设有一个大的任务 A,单线程编程,那么就要考虑很多,建立整个程序模型比较麻烦。但是如果把这个大的任务 A 分解成几个小任务,任务B、任务 C、任务 D,分别建立程序模型,并通过多线程分别运行这几个任务,那就简单很多了。

2.线程和进程的区别是什么?

进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

TCP/IP的具体含义

从字面意义上讲,有人可能会认为TCP/IP是指TCP与IP两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用IP进行通信时所必须用到的协议群的统称。具体来说,IP或ICMP、TCP或UDP、TELNET或FTP、以及HTTP等都属于TCP/IP的协议。它们与TCP或IP的关系紧密,是互联网必不可少的组成部分。TCP/IP一词泛指这些协议,因此,有时也称TCP/IP为网际协议族(网际协议族(Internet Protocol Suite):组成网际协议的一组协议) 。

image-20211210095906196

image-20211210100043783

image-20211210100129045

IP(IPv4、IPv6)相当于OSI参考模型中的第3层——网络层。网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点(end-to-end)通信”。

IP地址的定义

IP地址(IPv4地址)由32位正整数来表示。TCP/IP通信要求将这样的IP地址分配给每一个参与通信的主机。IP地址在计算机内部以二进制(二进制是指用0、1表示数字的方法。) 方式被处理。然而,由于人类社会并不习惯于采用二进制方式,需要采用一种特殊的标记方式。那就是将32位的IP地址以每8位为一组,分成4组,每组以“.”隔开,再将每组数转换为十进制数(这种方法也叫做“十进制点符号”(Dot-decimalnotation)。) 。下面举例说明这一方法。

image-20211210100449379

image-20211210100739729

IP地址的分类

IP地址分为四个级别,分别为A类、B类、C类、D类(还有一个一直未使用的E类。) 。它根据IP地址中从第1位到第4位的比特列对其网络标识和主机标识进行区分。

image-20211210101056676

image-20211210101444952

TCP/UDP

TCP/IP中有两个具有代表性的传输层协议,它们分别是TCP和UDP。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节控制交给应用的通信传输。总之,根据通信的具体特征,选择合适的传输层协议是非常重要的。

TCP/IP的众多应用协议大多以客户端/服务端的形式运行。客户端(客户端(Client)具有客户的意思。在计算机网络中是提供服务和使用服务的一方。) 类似于客户的意思,是请求的发起端。而服务端(服务端(Server)在计算机网络中则意味着提供服务的程序或计算机。) 则表示提供服务的意思,是请求的处理端。另外,作为服务端的程序有必要提前启动,准备接收客户端的请求。否则即使有客户端的请求发过来,也无法做到相应的处理。

image-20211210102650606

TCP

TCP是面向连接的、可靠的流协议。流就是指不间断的数据结构,你可以把它想象成排水管道中的水流。当应用程序采用TCP发送消息时,虽然可以保证发送的顺序,但还是犹如没有任何间隔的数据流发送给接收端(例如,在发送端应用程序发送了10次100字节的消息,那么在接收端,应用程序有可能会收到一个1000字节连续不间断的数据。因此在TCP通信中,发送端应用可以在自己所要发送的消息中设置一个表示长度或间隔的字段信息。) 。

TCP为提供可靠性传输,实行“顺序控制”或“重发控制”机制。此外还具备“流控制(流量控制)”、“拥塞控制”、提高网络利用率等众多功能。

UDP

UDP是不具有可靠性的数据报协议。细微的处理它会交给上层的应用去完成。在UDP的情况下,虽然可以确保发送消息的大小(例如,发送端应用程序发送一个100字节的消息,那么接收端应用程序也会以100字节为长度接收数据。UDP中,消息长度的数据也会发送到接收端,因此在发送的消息中不需要设置一个表示
消息长度或间隔的字段信息。然而,UDP不具备可靠传输。所以,发送端发出去的消息在网络传输途中一旦丢失,接收端将收不到这个消息。) ,却不能保证消息一定会到达。因此,应用有时会根据自己的需要进行重发处理。

端口号

数据链路和IP中的地址,分别指的是MAC地址和IP地址。前者用来识别同一链路中不同的计算机,后者用来识别TCP/IP网络中互连的主机和路由器。在传输层中也有这种类似于地址的概念,那就是端口号。端口号用来识别同一台计算机中进行通信的不同应用程序。因此,它也被称为程序地址。

image-20211210103241167

TCP/IP或UDP/IP通信中通常采用5个信息来识别(这个信息可以在Unix或Windows系统中通过netstat -n 命令显示。) 一个通信。它们是“源IP地址”、“目标IP地址”、“协议号”、“源端口号”、“目标端口号”。只要其中某一项不同,则被认为是其他通信。

image-20211210103457828

网络编程主要函数

1.socket函数

1
int socket(int domain, int type,int protocol);

此函数用于创建一个套接字。
domain是网络程序所在的主机采用的通讯协族(AF_UNIX和AF_INET等)。AF_UNIX只能够用于单一的Unix 系统进程间通信,而AF_INET是针对Internet的,因而可以允许远程通信使用。
type是网络程序所采用的通讯协议(SOCK_STREAM,SOCK_DGRAM等)。
SOCK_STREAM表明用的是TCP 协议,这样会提供按顺序的,可靠,双向,面向连接的比特流。
SOCK_DGRAM 表明用的是UDP协议,这样只会提不可靠,无连接的通信。
关于protocol,由于指定了type,所以这个地方一般只要用0来代替就可以了。
此函数执行成功时返回文件描述符,失败时返回-1,看errno可知道出错的详细情况。

2.bind函数

1
int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

从函数用于将地址绑定到一个套接字。
sockfd是由socket函数调用返回的文件描述符。
my_addr是一个指向sockaddr的指针。
addrlen是sockaddr结构的长度。

sockaddr的定义:

1
2
3
4
struct sockaddr{
unisgned short as_family;
char sa_data[14];
};

不过由于系统的兼容性,我们一般使用另外一个结构(struct sockaddr_in) 来代替。

1
2
3
4
5
6
struct sockaddr_in{
unsigned short sin_family; //AF_INET
unsigned short sin_port; //端口号
struct in_addr sin_addr; //IP地址 设置为INADDR_ANY表示可以和任何的主机通信
unsigned char sin_zero[8]; //0
}

3.listen函数

1
int listen(int sockfd,int backlog);

此函数宣告服务器可以接受连接请求。
sockfd是bind后的文件描述符。
backlog设置请求排队的最大长度。当有多个客户端程序和服务端相连时,使用这个表示可以介绍的排队长度。
listen函数将bind的文件描述符变为监听套接字,返回的情况和bind一样

4.accept函数

1
int accept(int sockfd, struct sockaddr *addr,int *addrlen);

服务器使用此函数获得连接请求,并且建立连接。
sockfd是listen后的文件描述符。
addr,addrlen是用来给客户端的程序填写的,服务器端只要传递指针就可以了, bind,listen和accept是服务器端用的函数。
accept调用时,服务器端的程序会一直阻塞到有一个客户程序发出了连接。 accept成功时返回最后的服务器端的文件描述符,这个时候服务器端可以向该描述符写信息了,失败时返回-1 。

5.connect函数

1
int connect(int sockfd, struct sockaddr * serv_addr,int addrlen);

可以用connect建立一个连接,在connect中所指定的地址是想与之通信的服务器的地址。
sockfd是socket函数返回的文件描述符。
serv_addr储存了服务器端的连接信息,其中sin_add是服务端的地址。
addrlen是serv_addr的长度
connect函数是客户端用来同服务端连接的.成功时返回0,sockfd是同服务端通讯的文件描述符,失败时返回-1。

6.send函数

1
ssize_t send(int sockfd, const void *buf, size_t len, int flags);

sockfd 指定发送端套接字描述符;
buf 指明一个存放应用程序要发送数据的缓冲区;
len 指明实际要发送的数据的字节数;
flags 一般置0。
客户或者服务器应用程序都用send函数来向TCP连接的另一端发送数据

7.recv函数

1
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

sockfd 指定接收端套接字描述符;
buf 指明一个缓冲区,该缓冲区用来存放recv函数接收到的数据;
len 指明buf的长度;
flags 一般置0。
客户或者服务器应用程序都用recv函数从TCP连接的另一端接收数据。

8.recvfrom函数

1
2
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

recvfrom通常用于无连接套接字,因为此函数可以获得发送者的地址。
src_addr 是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。
addrlen 常置为sizeof (struct sockaddr)

9.sendto函数

1
2
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

sendto和send相似,区别在于sendto允许在无连接的套接字上指定一个目标地址。
dest_addr 表示目地机的IP地址和端口号信息,
addrlen 常常被赋值为sizeof (struct sockaddr)。
sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。

TCP编程

image-20211210114343966

三次握手

image-20211210114948643

四次挥手

image-20211210115002656

server

socket——bind——listen—-accept—send、recv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>


/* socket
* bind
* listen
* accept
* send/recv
*/

#define SERVER_PORT 8888
#define BACKLOG 10

int main(int argc, char **argv)
{
int iSocketServer;
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
struct sockaddr_in tSocketClientAddr;
int iRet;
int iAddrLen;

int iRecvLen;
unsigned char ucRecvBuf[1000];

int iClientNum = -1;

signal(SIGCHLD,SIG_IGN);

iSocketServer = socket(AF_INET, SOCK_STREAM, 0); //创建套接字
if (-1 == iSocketServer)
{
printf("socket error!\n");
return -1;
}

tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short *///设置端口号
tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
memset(tSocketServerAddr.sin_zero, 0, 8);

iRet = bind(iSocketServer, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr)); //绑定套接字
if (-1 == iRet)
{
printf("bind error!\n");
return -1;
}

iRet = listen(iSocketServer, BACKLOG);//开始监听
if (-1 == iRet)
{
printf("listen error!\n");
return -1;
}

while (1)
{
iAddrLen = sizeof(struct sockaddr);
iSocketClient = accept(iSocketServer, (struct sockaddr *)&tSocketClientAddr, &iAddrLen);
if (-1 != iSocketClient)
{
iClientNum++;
printf("Get connect from client %d : %s\n", iClientNum, inet_ntoa(tSocketClientAddr.sin_addr));
if (!fork())
{
/* 子进程源码*/
while (1)
{
/* 接收客户端的数据并显示出来 */
iRecvLen = recv(iSocketClient, ucRecvBuf, 999, 0);
if (iRecvLen <= 0)
{
close(iSocketClient);
return -1;
}
else
{
ucRecvBuf[iRecvLen] = '\0';
printf("Get Msg From Client %d: %s\n", iClientNum, ucRecvBuf);
}
}
}
}
}

close(iSocketServer);
return 0;
}



client

socket—–connect——send/recv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>

/* socket
* connect
* send/recv
*/

#define SERVER_PORT 8888

int main(int argc, char **argv)
{
int iSocketClient;
struct sockaddr_in tSocketServerAddr;

int iRet;
unsigned char ucSendBuf[1000];
int iSendLen;

if (argc != 2)
{
printf("Usage:\n");
printf("%s <server_ip>\n", argv[0]);
return -1;
}

iSocketClient = socket(AF_INET, SOCK_STREAM, 0);

tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
//tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
if (0 == inet_aton(argv[1], &tSocketServerAddr.sin_addr))
{
printf("invalid server_ip\n");
return -1;
}
memset(tSocketServerAddr.sin_zero, 0, 8);


iRet = connect(iSocketClient, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("connect error!\n");
return -1;
}

while (1)
{
if (fgets(ucSendBuf, 999, stdin))
{
iSendLen = send(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0);
if (iSendLen <= 0)
{
close(iSocketClient);
return -1;
}
}
}

return 0;
}


实验结果

客户端1

1
2
3
4
5
6
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/12_socket/tcp$ ./client 127.0.0.1
123456
111111
aaaaaa


客户端2

1
2
3
4
5
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/12_socket/tcp$ ./client 192.168.88.130
qazwsxedc
aaaaaaaaa
ssdfff

服务器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
book@100ask:~/01_all_series_quickstart/04_嵌入式Linux应用开发基础知识/source/12_socket/tcp$ ./server
Get connect from client 0 : 127.0.0.1
Get Msg From Client 0: 123456

Get Msg From Client 0: 111111

Get Msg From Client 0: aaaaaa

Get connect from client 1 : 192.168.88.130
Get Msg From Client 1: qazwsxedc

Get Msg From Client 1: aaaaaaaaa

Get Msg From Client 1: ssdfff

udp编程

image-20211210155425799

server

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>


/* socket
* bind
* sendto/recvfrom
*/

#define SERVER_PORT 8888

int main(int argc, char **argv)
{
int iSocketServer;
int iSocketClient;
struct sockaddr_in tSocketServerAddr;
struct sockaddr_in tSocketClientAddr;
int iRet;
int iAddrLen;

int iRecvLen;
unsigned char ucRecvBuf[1000];

int iClientNum = -1;

iSocketServer = socket(AF_INET, SOCK_DGRAM, 0);
if (-1 == iSocketServer)
{
printf("socket error!\n");
return -1;
}

tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
memset(tSocketServerAddr.sin_zero, 0, 8);

iRet = bind(iSocketServer, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("bind error!\n");
return -1;
}


while (1)
{
iAddrLen = sizeof(struct sockaddr);
iRecvLen = recvfrom(iSocketServer, ucRecvBuf, 999, 0, (struct sockaddr *)&tSocketClientAddr, &iAddrLen);
if (iRecvLen > 0)
{
ucRecvBuf[iRecvLen] = '\0';
printf("Get Msg From %s : %s\n", inet_ntoa(tSocketClientAddr.sin_addr), ucRecvBuf);
}
}

close(iSocketServer);
return 0;
}

client

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <sys/types.h>          /* See NOTES */
#include <sys/socket.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>

/* socket
* connect
* send/recv
*/

#define SERVER_PORT 8888

int main(int argc, char **argv)
{
int iSocketClient;
struct sockaddr_in tSocketServerAddr;

int iRet;
unsigned char ucSendBuf[1000];
int iSendLen;

if (argc != 2)
{
printf("Usage:\n");
printf("%s <server_ip>\n", argv[0]);
return -1;
}

iSocketClient = socket(AF_INET, SOCK_DGRAM, 0);

tSocketServerAddr.sin_family = AF_INET;
tSocketServerAddr.sin_port = htons(SERVER_PORT); /* host to net, short */
//tSocketServerAddr.sin_addr.s_addr = INADDR_ANY;
if (0 == inet_aton(argv[1], &tSocketServerAddr.sin_addr))
{
printf("invalid server_ip\n");
return -1;
}
memset(tSocketServerAddr.sin_zero, 0, 8);


iRet = connect(iSocketClient, (const struct sockaddr *)&tSocketServerAddr, sizeof(struct sockaddr));
if (-1 == iRet)
{
printf("connect error!\n");
return -1;
}

while (1)
{
if (fgets(ucSendBuf, 999, stdin))
{
iSendLen = send(iSocketClient, ucSendBuf, strlen(ucSendBuf), 0);
if (iSendLen <= 0)
{
close(iSocketClient);
return -1;
}
}
}

return 0;
}

Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.

Quick Start

Create a new post

1
$ hexo new "My New Post"

More info: Writing

Run server

1
$ hexo server

More info: Server

Generate static files

1
$ hexo generate

More info: Generating

Deploy to remote sites

1
$ hexo deploy

More info: Deployment